Skip to contents

These datasets shows a state of the data prior to becoming an input for this package.

Usage

example_emission_product_co2_des_analysis()

example_transition_risk_product_trs_des_analysis()

example_transition_risk_emission_ep_product_des_analysis()

example_transition_risk_sector_ep_product_des_analysis()

example_transition_risk_ep_product_des_analysis()

example_transition_risk_product_emission_cov()

example_transition_risk_product_sector_cov()

example_transition_risk_product_transition_risk_cov()

example_emission_product_best_case_worst_case()

example_sector_product_best_case_worst_case()

example_transition_risk_company_emission_avg_best_case_worst_case()

example_transition_risk_company_sector_avg_best_case_worst_case()

example_transition_risk_product_best_case_worst_case()

example_transition_risk_company_transition_risk_avg_best_case_worst_case()

Value

A dataframe.

Examples

example_emission_product_co2_des_analysis()
#> # A tibble: 8 × 8
#>   grouping_emission tilt_sector tilt_subsector unit  isic_4digit co2_footprint
#>   <chr>             <chr>       <chr>          <chr> <chr>               <dbl>
#> 1 tilt_subsector    group       chemicals      kg    '5555'                  1
#> 2 tilt_subsector    group       chemicals      kg    '5555'                  4
#> 3 tilt_subsector    group       chemicals      kg    '5555'                  9
#> 4 tilt_subsector    group       chemicals      kg    '5555'                  8
#> 5 tilt_subsector    group       chemicals      kg    '5555'                 NA
#> 6 tilt_subsector    group       iron & steel   m3    '6666'                  1
#> 7 tilt_subsector    group       iron & steel   m3    '6666'                  2
#> 8 tilt_subsector    group       iron & steel   m3    '6666'                  4
#> # ℹ 2 more variables: product <chr>, activity_uuid_product_uuid <chr>
example_transition_risk_product_trs_des_analysis()
#> # A tibble: 16 × 3
#>    tilt_subsector grouping_transition_risk     transition_risk_score
#>    <chr>          <chr>                                        <dbl>
#>  1 chemicals      1.5C RPS_2030_tilt_subsector                     1
#>  2 chemicals      1.5C RPS_2030_tilt_subsector                     2
#>  3 chemicals      1.5C RPS_2050_tilt_subsector                     3
#>  4 chemicals      1.5C RPS_2050_tilt_subsector                     4
#>  5 chemicals      NZ 2050_2030_tilt_subsector                      5
#>  6 chemicals      NZ 2050_2030_tilt_subsector                      6
#>  7 chemicals      NZ 2050_2050_tilt_subsector                      7
#>  8 chemicals      NZ 2050_2050_tilt_subsector                      8
#>  9 iron & steel   1.5C RPS_2030_tilt_subsector                     9
#> 10 iron & steel   1.5C RPS_2030_tilt_subsector                    10
#> 11 iron & steel   1.5C RPS_2050_tilt_subsector                    11
#> 12 iron & steel   1.5C RPS_2050_tilt_subsector                    12
#> 13 iron & steel   NZ 2050_2030_tilt_subsector                     13
#> 14 iron & steel   NZ 2050_2030_tilt_subsector                     14
#> 15 iron & steel   NZ 2050_2050_tilt_subsector                     15
#> 16 iron & steel   NZ 2050_2050_tilt_subsector                     NA
example_transition_risk_product_emission_cov()
#> # A tibble: 12 × 3
#>    companies_id grouping_emission   cov_emission_rank
#>    <chr>        <chr>                           <dbl>
#>  1 comp_1       all                                10
#>  2 comp_1       isic_4digit                        15
#>  3 comp_1       tilt_subsector                     20
#>  4 comp_1       unit                               25
#>  5 comp_1       unit_isic_4digit                   30
#>  6 comp_1       unit_tilt_subsector                35
#>  7 comp_2       all                                45
#>  8 comp_2       isic_4digit                        50
#>  9 comp_2       tilt_subsector                     55
#> 10 comp_2       unit                               60
#> 11 comp_2       unit_isic_4digit                   65
#> 12 comp_2       unit_tilt_subsector                70
example_transition_risk_product_sector_cov()
#> # A tibble: 8 × 4
#>   companies_id scenario  year cov_sector_target
#>   <chr>        <chr>    <dbl>             <dbl>
#> 1 comp_1       1.5C RPS  2030                10
#> 2 comp_1       1.5C RPS  2050                15
#> 3 comp_1       NZ 2050   2030                20
#> 4 comp_1       NZ 2050   2050                25
#> 5 comp_2       1.5C RPS  2030                45
#> 6 comp_2       1.5C RPS  2050                50
#> 7 comp_2       NZ 2050   2030                55
#> 8 comp_2       NZ 2050   2050                60
example_transition_risk_product_transition_risk_cov()
#> # A tibble: 8 × 3
#>   companies_id grouping_transition_risk     cov_transition_risk
#>   <chr>        <chr>                                      <dbl>
#> 1 comp_1       1.5C RPS_2030_tilt_subsector                  10
#> 2 comp_1       1.5C RPS_2050_tilt_subsector                  15
#> 3 comp_1       NZ 2050_2030_tilt_subsector                   20
#> 4 comp_1       NZ 2050_2050_tilt_subsector                   25
#> 5 comp_2       1.5C RPS_2030_tilt_subsector                  45
#> 6 comp_2       1.5C RPS_2050_tilt_subsector                  50
#> 7 comp_2       NZ 2050_2030_tilt_subsector                   55
#> 8 comp_2       NZ 2050_2050_tilt_subsector                   60
example_emission_product_best_case_worst_case()
#> # A tibble: 30 × 7
#>    companies_id grouping_emission country emission_category
#>    <chr>        <chr>             <chr>   <chr>            
#>  1 comp_1       all               france  high             
#>  2 comp_2       all               france  high             
#>  3 comp_1       all               france  high             
#>  4 comp_1       all               france  medium           
#>  5 comp_1       all               france  low              
#>  6 comp_1       all               france  low              
#>  7 comp_1       all               france  NA               
#>  8 comp_1       tilt_subsector    france  high             
#>  9 comp_1       tilt_subsector    france  medium           
#> 10 comp_1       tilt_subsector    france  medium           
#> # ℹ 20 more rows
#> # ℹ 3 more variables: emissions_profile_equal_weight <dbl>,
#> #   emissions_profile_best_case <dbl>, emissions_profile_worst_case <dbl>
example_transition_risk_company_emission_avg_best_case_worst_case()
#> # A tibble: 14 × 6
#>    companies_id country     grouping_emission emission_rank_avg_equal_weight
#>    <chr>        <chr>       <chr>                                      <dbl>
#>  1 comp_1       france      all                                         0.25
#>  2 comp_1       france      tilt_subsector                              0.85
#>  3 comp_2       france      all                                         0.1 
#>  4 comp_2       france      tilt_subsector                              0.3 
#>  5 comp_3       austria     all                                         0.35
#>  6 comp_3       austria     tilt_subsector                              0.55
#>  7 comp_4       austria     all                                         0.7 
#>  8 comp_4       austria     tilt_subsector                              0.2 
#>  9 comp_5       germany     all                                         0.7 
#> 10 comp_5       germany     tilt_subsector                              0.2 
#> 11 comp_6       netherlands all                                         0.7 
#> 12 comp_6       netherlands tilt_subsector                              0.2 
#> 13 comp_7       spain       all                                         0.7 
#> 14 comp_7       spain       tilt_subsector                              0.2 
#> # ℹ 2 more variables: emission_rank_avg_best_case <dbl>,
#> #   emission_rank_avg_worst_case <dbl>
example_transition_risk_company_sector_avg_best_case_worst_case()
#> # A tibble: 14 × 7
#>    companies_id country     scenario  year sector_target_avg_equal_weight
#>    <chr>        <chr>       <chr>    <dbl>                          <dbl>
#>  1 comp_1       france      1.5C RPS  2030                           0.25
#>  2 comp_1       france      NZ 2050   2030                           0.85
#>  3 comp_2       france      1.5C RPS  2030                           0.1 
#>  4 comp_2       france      NZ 2050   2030                           0.3 
#>  5 comp_3       austria     1.5C RPS  2030                           0.35
#>  6 comp_3       austria     NZ 2050   2030                           0.55
#>  7 comp_4       austria     1.5C RPS  2030                           0.7 
#>  8 comp_4       austria     NZ 2050   2030                           0.2 
#>  9 comp_5       germany     1.5C RPS  2030                           0.7 
#> 10 comp_5       germany     NZ 2050   2030                           0.2 
#> 11 comp_6       netherlands 1.5C RPS  2030                           0.7 
#> 12 comp_6       netherlands NZ 2050   2030                           0.2 
#> 13 comp_7       spain       1.5C RPS  2030                           0.7 
#> 14 comp_7       spain       NZ 2050   2030                           0.2 
#> # ℹ 2 more variables: sector_target_avg_best_case <dbl>,
#> #   sector_target_avg_worst_case <dbl>
example_transition_risk_product_best_case_worst_case()
#> # A tibble: 30 × 7
#>    companies_id grouping_transition_risk country transition_risk_category
#>    <chr>        <chr>                    <chr>   <chr>                   
#>  1 comp_1       1.5C RPS_2030_all        france  high                    
#>  2 comp_2       1.5C RPS_2030_all        france  high                    
#>  3 comp_1       1.5C RPS_2030_all        france  high                    
#>  4 comp_1       1.5C RPS_2030_all        france  medium                  
#>  5 comp_1       1.5C RPS_2030_all        france  low                     
#>  6 comp_1       1.5C RPS_2030_all        france  low                     
#>  7 comp_1       1.5C RPS_2030_all        france  NA                      
#>  8 comp_1       NZ 2050_2030_all         france  high                    
#>  9 comp_1       NZ 2050_2030_all         france  medium                  
#> 10 comp_1       NZ 2050_2030_all         france  medium                  
#> # ℹ 20 more rows
#> # ℹ 3 more variables: transition_risk_profile_equal_weight <dbl>,
#> #   transition_risk_profile_best_case <dbl>,
#> #   transition_risk_profile_worst_case <dbl>
example_transition_risk_company_transition_risk_avg_best_case_worst_case()
#> # A tibble: 14 × 6
#>    companies_id country     grouping_transition_risk avg_transition_risk_equal…¹
#>    <chr>        <chr>       <chr>                                          <dbl>
#>  1 comp_1       france      1.5C RPS_2030_all                               0.25
#>  2 comp_1       france      NZ 2050_2030_all                                0.85
#>  3 comp_2       france      1.5C RPS_2030_all                               0.1 
#>  4 comp_2       france      NZ 2050_2030_all                                0.3 
#>  5 comp_3       austria     1.5C RPS_2030_all                               0.35
#>  6 comp_3       austria     NZ 2050_2030_all                                0.55
#>  7 comp_4       austria     1.5C RPS_2030_all                               0.7 
#>  8 comp_4       austria     NZ 2050_2030_all                                0.2 
#>  9 comp_5       germany     1.5C RPS_2030_all                               0.7 
#> 10 comp_5       germany     NZ 2050_2030_all                                0.2 
#> 11 comp_6       netherlands 1.5C RPS_2030_all                               0.7 
#> 12 comp_6       netherlands NZ 2050_2030_all                                0.2 
#> 13 comp_7       spain       1.5C RPS_2030_all                               0.7 
#> 14 comp_7       spain       NZ 2050_2030_all                                0.2 
#> # ℹ abbreviated name: ¹​avg_transition_risk_equal_weight
#> # ℹ 2 more variables: avg_transition_risk_best_case <dbl>,
#> #   avg_transition_risk_worst_case <dbl>
example_transition_risk_emission_ep_product_des_analysis()
#> # A tibble: 10 × 4
#>    companies_id product grouping_emission emission_category
#>    <chr>        <chr>   <chr>             <chr>            
#>  1 comp_1       a       all               high             
#>  2 comp_1       b       all               high             
#>  3 comp_1       c       all               high             
#>  4 comp_1       d       NA                NA               
#>  5 comp_1       e       NA                NA               
#>  6 comp_2       a       all               high             
#>  7 comp_2       b       all               high             
#>  8 comp_2       c       all               high             
#>  9 comp_3       d       NA                NA               
#> 10 comp_3       e       NA                NA               
example_transition_risk_sector_ep_product_des_analysis()
#> # A tibble: 10 × 4
#>    companies_id product sector_target sector_category
#>    <chr>        <chr>           <dbl> <chr>          
#>  1 comp_1       a                0.12 high           
#>  2 comp_1       b                0.96 high           
#>  3 comp_1       c                0.64 high           
#>  4 comp_1       d               NA    NA             
#>  5 comp_1       e               NA    NA             
#>  6 comp_2       a                0.12 high           
#>  7 comp_2       b                0.96 high           
#>  8 comp_2       c                0.64 high           
#>  9 comp_3       d               NA    NA             
#> 10 comp_3       e               NA    NA             
example_transition_risk_ep_product_des_analysis()
#> # A tibble: 10 × 4
#>    companies_id product grouping_transition_risk transition_risk_category
#>    <chr>        <chr>   <chr>                    <chr>                   
#>  1 comp_1       a       1.5C RPS_2030_all        high                    
#>  2 comp_1       b       1.5C RPS_2030_all        high                    
#>  3 comp_1       c       1.5C RPS_2030_all        high                    
#>  4 comp_1       d       NA                       NA                      
#>  5 comp_1       e       NA                       NA                      
#>  6 comp_2       a       1.5C RPS_2030_all        high                    
#>  7 comp_2       b       1.5C RPS_2030_all        high                    
#>  8 comp_2       c       1.5C RPS_2030_all        high                    
#>  9 comp_3       d       NA                       NA                      
#> 10 comp_3       e       NA                       NA                      
example_sector_product_best_case_worst_case()
#> # A tibble: 30 × 8
#>    companies_id scenario  year country sector_category sector_profile_equal_we…¹
#>    <chr>        <chr>    <dbl> <chr>   <chr>                               <dbl>
#>  1 comp_1       1.5C RPS  2030 france  high                                 0.25
#>  2 comp_2       1.5C RPS  2030 france  high                                 0.25
#>  3 comp_1       1.5C RPS  2030 france  high                                 0.75
#>  4 comp_1       1.5C RPS  2030 france  medium                               0.1 
#>  5 comp_1       1.5C RPS  2030 france  low                                  0.15
#>  6 comp_1       1.5C RPS  2030 france  low                                  0.55
#>  7 comp_1       1.5C RPS  2030 france  NA                                   0.3 
#>  8 comp_1       NZ 2050   2030 france  high                                 0.45
#>  9 comp_1       NZ 2050   2030 france  medium                               0.6 
#> 10 comp_1       NZ 2050   2030 france  medium                               0.4 
#> # ℹ 20 more rows
#> # ℹ abbreviated name: ¹​sector_profile_equal_weight
#> # ℹ 2 more variables: sector_profile_best_case <dbl>,
#> #   sector_profile_worst_case <dbl>