Skip to contents

This article shows how to calculate the descriptive analysis of products for emission and sector profile.

Distinct europages products

Input

companies_id company_name country company_city postcode address main_activity clustered min_headcount max_headcount
warriorlike_graysquirrel warriorlike_graysquirrel germany grünwald 82031 bavariafilmplatz 7 | 82031 grünwald wholesaler exhibitions, stand fittings 1 10
leathery_acornwoodpecker leathery_acornwoodpecker germany düsseldorf 40468 ulmenstrasse 275 | 40468 düsseldorf wholesaler exhibitions, stand fittings 1 10
automotive_alaskanmalamute automotive_alaskanmalamute germany trier 54292 rheinstrasse 60 | 54292 trier wholesaler exhibitions, stand fittings 1 10
weatherproof_roadrunner weatherproof_roadrunner germany münchen 80337 tumblingerstrasse 32 | 80337 münchen wholesaler exhibitions, stand fittings 1 10
angular_oregonsilverspotbutterfly angular_oregonsilverspotbutterfly germany veitsbronn 90587 stockäckerstrasse 9 | 90587 veitsbronn distributor exhibitions, stand fittings 1 10
bereft_anchovy bereft_anchovy germany langenselbold 63505 am felsenkeller 7 | 63505 langenselbold distributor exhibitions, stand fittings 1 10
asteria_megalotomusquinquespinosus asteria_megalotomusquinquespinosus austria wilhelmsburg 3150 fleschplatz 2, top 5 | 3150 wilhelmsburg wholesaler tent 1 10
reversible_affenpinscher reversible_affenpinscher germany quickborn 25451 friedrichsgaber strasse 21 | 25451 quickborn wholesaler tent 1 10
exportable_widgeon exportable_widgeon germany vlotho 32602 lange strasse 100 | 32602 vlotho wholesaler tent 1 10
comely_manta comely_manta germany henstedt-ulzburg 24558 hohenbergen 64 | 24558 henstedt-ulzburg wholesaler tent 1 10

Output

cat("Distinct europages products:", n_distinct(example_europages_companies$clustered))

Distinct europages products: 2

Distinct europages products that matched to ecoinvent

Input

companies_id product grouping_emission emission_category
comp_1 a all high
comp_1 b all high
comp_1 c all high
comp_1 d NA NA
comp_1 e NA NA
comp_2 a all high
comp_2 b all high
comp_2 c all high
comp_3 d NA NA
comp_3 e NA NA

Output

cat("Distinct europages products:", n_distinct(matched_ecoinvent$product))

Distinct europages products: 3

Distinct europages products that have sector_target

Input

companies_id product sector_target sector_category
comp_1 a 0.12 high
comp_1 b 0.96 high
comp_1 c 0.64 high
comp_1 d NA NA
comp_1 e NA NA
comp_2 a 0.12 high
comp_2 b 0.96 high
comp_2 c 0.64 high
comp_3 d NA NA
comp_3 e NA NA

Output

cat("Distinct europages products:", n_distinct(products_sector_target$product))

Distinct europages products: 3

Average amount of distinct ep products per company for emission profile if the company have atleast one matched ecoinvent product

avg_distinct_products_per_company_atleast_one_matched_ecoinvent <- function(data, col) {
  companies_with_atleast_one_matched_product <- data |>
    select(all_of(c("companies_id", "product", col))) |>
    filter(!is.na(.data[[col]])) |>
    distinct()
  result <- data |>
    select(all_of(c("companies_id", "product"))) |>
    filter(companies_id %in% companies_with_atleast_one_matched_product$companies_id) |>
    mutate(distinct_products_per_company = n_distinct(product, na.rm = TRUE), .by = "companies_id") |>
    select(-all_of(c("product"))) |>
    distinct()
  
  sum(result$distinct_products_per_company) / n_distinct(result$companies_id)
}
cat("Average amount of distinct ep products per company for emission profile if the company have atleast one matched ecoinvent product:", avg_distinct_products_per_company_atleast_one_matched_ecoinvent(example_emission_profile, "emission_category"))

Average amount of distinct ep products per company for emission profile if the company have atleast one matched ecoinvent product: 4

Average amount of ep distinct products per company for sector profile if the company have atleast one product with sector target

cat("Average amount of distinct ep products per company for sector profile if the company have atleast one product with sector target:", avg_distinct_products_per_company_atleast_one_matched_ecoinvent(example_sector_profile, "sector_category"))

Average amount of distinct ep products per company for sector profile if the company have atleast one product with sector target: 4

Average amount of distinct ep products per company for transition risk profile if the company have atleast one product with transition risk category

Input

companies_id product grouping_transition_risk transition_risk_category
comp_1 a 1.5C RPS_2030_all high
comp_1 b 1.5C RPS_2030_all high
comp_1 c 1.5C RPS_2030_all high
comp_1 d NA NA
comp_1 e NA NA
comp_2 a 1.5C RPS_2030_all high
comp_2 b 1.5C RPS_2030_all high
comp_2 c 1.5C RPS_2030_all high
comp_3 d NA NA
comp_3 e NA NA
cat("Average amount of distinct ep products per company for sector profile if the company have atleast one product with transition risk category:", avg_distinct_products_per_company_atleast_one_matched_ecoinvent(example_transition_risk_profile, "transition_risk_category"))

Average amount of distinct ep products per company for sector profile if the company have atleast one product with transition risk category: 4

Average amount of distinct ep products per company

cat("Average amount of distinct ep products per company: ", avg_distinct_products_per_company(example_transition_risk_profile))

Average amount of distinct ep products per company: 3.333333

Distinct ep products without a risk category for emission, sector, and transition risk profile

cat("Distinct ep products without a risk category for emission profile:", distinct_products_without_risk_category(example_emission_profile, "emission_category"))

Distinct ep products without a risk category for emission profile: 2

cat("Distinct ep products without a risk category for sector profile:", distinct_products_without_risk_category(example_sector_profile, "sector_category"))

Distinct ep products without a risk category for sector profile: 2

cat("Distinct ep products without a risk category for transition risk profile:", distinct_products_without_risk_category(example_transition_risk_profile, "transition_risk_category"))

Distinct ep products without a risk category for transition risk profile: 2

Average profile ranking of all ep products per grouping_emission

Input

product grouping_emission emission_rank
tent all 1.0000000
tent tilt_subsector 1.0000000
surface engineering all 0.3333333
surface engineering tilt_subsector 1.0000000

Output

avg_profile_ranking_df <- profile_rank_df |>
  mutate(sum_profile_ranking = sum(.data$emission_rank, na.rm = TRUE), .by = "grouping_emission") |>
  mutate(distinct_products_per_benchmark = n_distinct(.data$product, na.rm = TRUE), .by = "grouping_emission") |>
  mutate("emission rank average" = sum_profile_ranking/distinct_products_per_benchmark) |>
  select(-all_of(c("sum_profile_ranking", "distinct_products_per_benchmark", "emission_rank", "product"))) |>
  distinct()
Average profile ranking of all ep products per grouping_emission
grouping_emission emission rank average
all 0.6666667
tilt_subsector 1.0000000

Average reduction targets of all ep products per grouping_sector

Input

product sector_target grouping_sector
tent 0.18 1.5C RPS_2030
tent 0.98 1.5C RPS_2050
tent 0.40 NZ 2050_2030
tent 0.97 NZ 2050_2050
surface engineering 0.09 1.5C RPS_2030
surface engineering 0.95 1.5C RPS_2050
surface engineering 0.22 NZ 2050_2030
surface engineering 0.96 NZ 2050_2050

Output

Average reduction targets of all ep products per grouping_sector
grouping_sector sector target average
1.5C RPS_2030 0.135
1.5C RPS_2050 0.965
NZ 2050_2030 0.310
NZ 2050_2050 0.965

Average transition risk scores of all ep products per tilt_subsector benchmarks

Input

product grouping_transition_risk transition_risk_score
tent 1.5C RPS_2030_all 0.5900000
tent 1.5C RPS_2050_all 0.9900000
tent NZ 2050_2030_all 0.7000000
tent NZ 2050_2050_all 0.9850000
tent 1.5C RPS_2030_tilt_subsector 0.5900000
tent 1.5C RPS_2050_tilt_subsector 0.9900000
tent NZ 2050_2030_tilt_subsector 0.7000000
tent NZ 2050_2050_tilt_subsector 0.9850000
surface engineering 1.5C RPS_2030_all 0.2116667
surface engineering 1.5C RPS_2050_all 0.6416667

Output

Average transition risk scores of all ep products per transition risk groups
group scenario transition risk average
all 1.5C RPS_2030 0.4008333
1.5C RPS_2050 0.8158333
NZ 2050 0.4883333
NZ 2050 0.8158333
tilt_subsector 1.5C RPS_2030 0.5675000
1.5C RPS_2050 0.9825000
NZ 2050 0.6550000
NZ 2050 0.9825000

Average NA share per company

Companies with atleast one matched ecoinvent product for emission profile

companies_id product emission_category
asteria_megalotomusquinquespinosus tent high
skarn_gallinule sheds, construction site high
relegable_southernhairnosedwombat tent high
psychodelic_airedale tent high
ergophilic_fieldspaniel tent high
preexistent_africanmolesnake tent high
wealthy_ocelot tent high
fulltime_mollusk tent high
gentlemanlike_asiaticlesserfreshwaterclam tent high
frowsy_metalmarkbutterfly tent high

Average NA share per company which have atleast one matched ecoinvent product for emission profile

companies_id emission_category_NA
asteria_megalotomusquinquespinosus 0
skarn_gallinule 0
relegable_southernhairnosedwombat 0
psychodelic_airedale 0
ergophilic_fieldspaniel 0
preexistent_africanmolesnake 0
wealthy_ocelot 0
fulltime_mollusk 0
gentlemanlike_asiaticlesserfreshwaterclam 0
frowsy_metalmarkbutterfly 0
cat("Average NA share per company with atleast one matched ecoinvent product for emission profile:", average_na_emission_profile)

Average NA share per company with atleast one matched ecoinvent product for emission profile: 0

Companies with atleast one product with sector category/sector target

companies_id product emission_category
asteria_megalotomusquinquespinosus tent high
skarn_gallinule sheds, construction site high
relegable_southernhairnosedwombat tent high
psychodelic_airedale tent high
ergophilic_fieldspaniel tent high
preexistent_africanmolesnake tent high
wealthy_ocelot tent high
fulltime_mollusk tent high
gentlemanlike_asiaticlesserfreshwaterclam tent high
frowsy_metalmarkbutterfly tent high

Average NA share per company which have atleast one product with sector category

companies_id sector_category_NA
asteria_megalotomusquinquespinosus 0
skarn_gallinule 0
relegable_southernhairnosedwombat 0
psychodelic_airedale 0
ergophilic_fieldspaniel 0
preexistent_africanmolesnake 0
wealthy_ocelot 0
fulltime_mollusk 0
gentlemanlike_asiaticlesserfreshwaterclam 0
frowsy_metalmarkbutterfly 0
cat("Average NA share per company with atleast one product with sector category:", average_na_sector_profile)

Average NA share per company with atleast one product with sector category: 0

Companies with atleast one product with transition risk category

companies_id product transition_risk_category
asteria_megalotomusquinquespinosus tent high
asteria_megalotomusquinquespinosus tent medium
skarn_gallinule sheds, construction site high
skarn_gallinule sheds, construction site medium
relegable_southernhairnosedwombat tent high
relegable_southernhairnosedwombat tent medium
psychodelic_airedale tent high
psychodelic_airedale tent medium
ergophilic_fieldspaniel tent high
ergophilic_fieldspaniel tent medium

Average NA share per company which have atleast one product with transition risk category

companies_id transition_risk_NA_share
asteria_megalotomusquinquespinosus 0
skarn_gallinule 0
relegable_southernhairnosedwombat 0
psychodelic_airedale 0
ergophilic_fieldspaniel 0
preexistent_africanmolesnake 0
wealthy_ocelot 0
fulltime_mollusk 0
gentlemanlike_asiaticlesserfreshwaterclam 0
frowsy_metalmarkbutterfly 0
cat("Average NA share per company with atleast one product with transition risk category:", average_na_transition_risk_profile)

Average NA share per company with atleast one product with transition risk category: 0