Skip to contents

This article shows how to calculate the descriptive analysis of products for emission and sector profile.

Distinct europages products

Input

companies_id company_name country company_city postcode address main_activity clustered min_headcount max_headcount
warriorlike_graysquirrel warriorlike_graysquirrel germany grünwald 82031 bavariafilmplatz 7 | 82031 grünwald wholesaler exhibitions, stand fittings 1 10
leathery_acornwoodpecker leathery_acornwoodpecker germany düsseldorf 40468 ulmenstrasse 275 | 40468 düsseldorf wholesaler exhibitions, stand fittings 1 10
automotive_alaskanmalamute automotive_alaskanmalamute germany trier 54292 rheinstrasse 60 | 54292 trier wholesaler exhibitions, stand fittings 1 10
weatherproof_roadrunner weatherproof_roadrunner germany münchen 80337 tumblingerstrasse 32 | 80337 münchen wholesaler exhibitions, stand fittings 1 10
angular_oregonsilverspotbutterfly angular_oregonsilverspotbutterfly germany veitsbronn 90587 stockäckerstrasse 9 | 90587 veitsbronn distributor exhibitions, stand fittings 1 10
bereft_anchovy bereft_anchovy germany langenselbold 63505 am felsenkeller 7 | 63505 langenselbold distributor exhibitions, stand fittings 1 10
asteria_megalotomusquinquespinosus asteria_megalotomusquinquespinosus austria wilhelmsburg 3150 fleschplatz 2, top 5 | 3150 wilhelmsburg wholesaler tent 1 10
reversible_affenpinscher reversible_affenpinscher germany quickborn 25451 friedrichsgaber strasse 21 | 25451 quickborn wholesaler tent 1 10
exportable_widgeon exportable_widgeon germany vlotho 32602 lange strasse 100 | 32602 vlotho wholesaler tent 1 10
comely_manta comely_manta germany henstedt-ulzburg 24558 hohenbergen 64 | 24558 henstedt-ulzburg wholesaler tent 1 10

Output

cat("Distinct europages products:", n_distinct(example_europages_companies$clustered))

Distinct europages products: 2

Distinct europages products that matched to ecoinvent

Input

companies_id product grouping_emission emission_category
comp_1 a all high
comp_1 b all high
comp_1 c all high
comp_1 d NA NA
comp_1 e NA NA
comp_2 a all high
comp_2 b all high
comp_2 c all high
comp_3 d NA NA
comp_3 e NA NA

Output

cat("Distinct europages products:", n_distinct(matched_ecoinvent$product))

Distinct europages products: 3

Distinct europages products that have sector_target

Input

companies_id product sector_target sector_category
comp_1 a 0.12 high
comp_1 b 0.96 high
comp_1 c 0.64 high
comp_1 d NA NA
comp_1 e NA NA
comp_2 a 0.12 high
comp_2 b 0.96 high
comp_2 c 0.64 high
comp_3 d NA NA
comp_3 e NA NA

Output

cat("Distinct europages products:", n_distinct(products_sector_target$product))

Distinct europages products: 3

Average amount of distinct ep products per company for emission profile if the company have atleast one matched ecoinvent product

avg_distinct_products_per_company_atleast_one_matched_ecoinvent <- function(data, col) {
  companies_with_atleast_one_matched_product <- data |>
    select(all_of(c("companies_id", "product", col))) |>
    filter(!is.na(.data[[col]])) |>
    distinct()
  result <- data |>
    select(all_of(c("companies_id", "product"))) |>
    filter(companies_id %in% companies_with_atleast_one_matched_product$companies_id) |>
    mutate(distinct_products_per_company = n_distinct(product, na.rm = TRUE), .by = "companies_id") |>
    select(-all_of(c("product"))) |>
    distinct()
  
  sum(result$distinct_products_per_company) / n_distinct(result$companies_id)
}
cat("Average amount of distinct ep products per company for emission profile if the company have atleast one matched ecoinvent product:", avg_distinct_products_per_company_atleast_one_matched_ecoinvent(example_emission_profile, "emission_category"))

Average amount of distinct ep products per company for emission profile if the company have atleast one matched ecoinvent product: 4

Average amount of ep distinct products per company for sector profile if the company have atleast one product with sector target

cat("Average amount of distinct ep products per company for sector profile if the company have atleast one product with sector target:", avg_distinct_products_per_company_atleast_one_matched_ecoinvent(example_sector_profile, "sector_category"))

Average amount of distinct ep products per company for sector profile if the company have atleast one product with sector target: 4

Average amount of distinct ep products per company for transition risk profile if the company have atleast one product with transition risk category

Input

companies_id country product grouping_transition_risk transition_risk_category
comp_1 germany a 1.5C RPS_2030_all high
comp_1 germany b 1.5C RPS_2030_all high
comp_1 germany c 1.5C RPS_2030_all high
comp_1 germany d NA NA
comp_1 germany e NA NA
comp_2 germany a 1.5C RPS_2030_all high
comp_2 germany b 1.5C RPS_2030_all high
comp_2 germany c 1.5C RPS_2030_all high
comp_3 germany d NA NA
comp_3 germany e NA NA
cat("Average amount of distinct ep products per company for sector profile if the company have atleast one product with transition risk category:", avg_distinct_products_per_company_atleast_one_matched_ecoinvent(example_transition_risk_profile, "transition_risk_category"))

Average amount of distinct ep products per company for sector profile if the company have atleast one product with transition risk category: 4

Average amount of distinct ep products per company

cat("Average amount of distinct ep products per company: ", avg_distinct_products_per_company(example_transition_risk_profile))

Average amount of distinct ep products per company: 3.333333

Distinct ep products without a risk category for emission, sector, and transition risk profile

cat("Distinct ep products without a risk category for emission profile:", distinct_products_without_risk_category(example_emission_profile, "emission_category"))

Distinct ep products without a risk category for emission profile: 2

cat("Distinct ep products without a risk category for sector profile:", distinct_products_without_risk_category(example_sector_profile, "sector_category"))

Distinct ep products without a risk category for sector profile: 2

cat("Distinct ep products without a risk category for transition risk profile:", distinct_products_without_risk_category(example_transition_risk_profile, "transition_risk_category"))

Distinct ep products without a risk category for transition risk profile: 2

Average profile ranking of all ep products per grouping_emission

Input

product grouping_emission emission_rank
tent unit 1
tent unit_isic_4digit 1
tent unit_tilt_subsector 1
sheds, construction site unit 1
sheds, construction site unit_isic_4digit 1
sheds, construction site unit_tilt_subsector 1
open space amenities unit 1
open space amenities unit_isic_4digit 1
open space amenities unit_tilt_subsector 1
garden fittings unit 1

Output

avg_profile_ranking_df <- profile_rank_df |>
  mutate(sum_profile_ranking = sum(.data$emission_rank, na.rm = TRUE), .by = "grouping_emission") |>
  mutate(distinct_products_per_benchmark = n_distinct(.data$product, na.rm = TRUE), .by = "grouping_emission") |>
  mutate("emission rank average" = sum_profile_ranking/distinct_products_per_benchmark) |>
  select(-all_of(c("sum_profile_ranking", "distinct_products_per_benchmark", "emission_rank", "product"))) |>
  distinct()
Average profile ranking of all ep products per grouping_emission
grouping_emission emission rank average
unit 0.9047619
unit_isic_4digit 1.0000000
unit_tilt_subsector 1.0000000

Average reduction targets of all ep products per grouping_sector

Input

product sector_target grouping_sector
tent 0.18 1.5C RPS_2030
tent 0.98 1.5C RPS_2050
tent 0.40 NZ 2050_2030
tent 0.97 NZ 2050_2050
sheds, construction site 0.18 1.5C RPS_2030
sheds, construction site 0.98 1.5C RPS_2050
sheds, construction site 0.40 NZ 2050_2030
sheds, construction site 0.97 NZ 2050_2050
open space amenities 0.18 1.5C RPS_2030
open space amenities 0.98 1.5C RPS_2050

Output

Average reduction targets of all ep products per grouping_sector
grouping_sector sector target average
1.5C RPS_2030 0.1685714
1.5C RPS_2050 0.9714286
NZ 2050_2030 0.3414286
NZ 2050_2050 0.9638095

Average transition risk scores of all ep products per tilt_subsector benchmarks

Input

product grouping_transition_risk transition_risk_score
tent 1.5C RPS_2030_unit 0.590
tent 1.5C RPS_2050_unit 0.990
tent NZ 2050_2030_unit 0.700
tent NZ 2050_2050_unit 0.985
tent 1.5C RPS_2030_unit_isic_4digit 0.590
tent 1.5C RPS_2050_unit_isic_4digit 0.990
tent NZ 2050_2030_unit_isic_4digit 0.700
tent NZ 2050_2050_unit_isic_4digit 0.985
tent 1.5C RPS_2030_unit_tilt_subsector 0.590
tent 1.5C RPS_2050_unit_tilt_subsector 0.990
tent NZ 2050_2030_unit_tilt_subsector 0.700
tent NZ 2050_2050_unit_tilt_subsector 0.985
sheds, construction site 1.5C RPS_2030_unit 0.590
sheds, construction site 1.5C RPS_2050_unit 0.990
sheds, construction site NZ 2050_2030_unit 0.700
sheds, construction site NZ 2050_2050_unit 0.985
sheds, construction site 1.5C RPS_2030_unit_isic_4digit 0.590
sheds, construction site 1.5C RPS_2050_unit_isic_4digit 0.990
sheds, construction site NZ 2050_2030_unit_isic_4digit 0.700
sheds, construction site NZ 2050_2050_unit_isic_4digit 0.985

Output

Average transition risk scores of all ep products per transition risk groups
group scenario transition risk average
unit 1.5C RPS_2030 0.5366667
1.5C RPS_2050 0.9380952
NZ 2050_2030 0.6230952
NZ 2050_2050 0.9342857
unit_isic_4digit 1.5C RPS_2030 0.5842857
1.5C RPS_2050 0.9857143
NZ 2050_2030 0.6707143
NZ 2050_2050 0.9819048
unit_tilt_subsector 1.5C RPS_2030 0.5842857
1.5C RPS_2050 0.9857143
NZ 2050_2030 0.6707143
NZ 2050_2050 0.9819048

Average transition risk scores of all ep products per tilt_subsector and country

Input

product country grouping_transition_risk transition_risk_score
tent austria 1.5C RPS_2030_unit_tilt_subsector 0.590
tent austria 1.5C RPS_2050_unit_tilt_subsector 0.990
tent austria NZ 2050_2030_unit_tilt_subsector 0.700
tent austria NZ 2050_2050_unit_tilt_subsector 0.985
sheds, construction site austria 1.5C RPS_2030_unit_tilt_subsector 0.590
sheds, construction site austria 1.5C RPS_2050_unit_tilt_subsector 0.990
sheds, construction site austria NZ 2050_2030_unit_tilt_subsector 0.700
sheds, construction site austria NZ 2050_2050_unit_tilt_subsector 0.985
open space amenities france 1.5C RPS_2030_unit_tilt_subsector 0.590
open space amenities france 1.5C RPS_2050_unit_tilt_subsector 0.990
open space amenities france NZ 2050_2030_unit_tilt_subsector 0.700
open space amenities france NZ 2050_2050_unit_tilt_subsector 0.985
garden fittings france 1.5C RPS_2030_unit_tilt_subsector 0.590
garden fittings france 1.5C RPS_2050_unit_tilt_subsector 0.990
garden fittings france NZ 2050_2030_unit_tilt_subsector 0.700
garden fittings france NZ 2050_2050_unit_tilt_subsector 0.985
tent germany 1.5C RPS_2030_unit_tilt_subsector 0.590
tent germany 1.5C RPS_2050_unit_tilt_subsector 0.990
tent germany NZ 2050_2030_unit_tilt_subsector 0.700
tent germany NZ 2050_2050_unit_tilt_subsector 0.985

Output

Average transition risk scores of all ep products per transition risk group per country
group country scenario transition risk average
unit_tilt_subsector austria 1.5C RPS_2030 0.5900000
1.5C RPS_2050 0.9900000
NZ 2050_2030 0.7000000
NZ 2050_2050 0.9850000
france 1.5C RPS_2030 0.5900000
1.5C RPS_2050 0.9900000
NZ 2050_2030 0.7000000
NZ 2050_2050 0.9850000
germany 1.5C RPS_2030 0.5807692
1.5C RPS_2050 0.9830769
NZ 2050_2030 0.6526923
NZ 2050_2050 0.9800000
netherlands 1.5C RPS_2030 0.5900000
1.5C RPS_2050 0.9900000
NZ 2050_2030 0.7000000
NZ 2050_2050 0.9850000
spain 1.5C RPS_2030 0.5900000
1.5C RPS_2050 0.9900000
NZ 2050_2030 0.7000000
NZ 2050_2050 0.9850000

Average NA share per company

Companies with atleast one matched ecoinvent product for emission profile

companies_id product emission_category
asteria_megalotomusquinquespinosus tent high
skarn_gallinule sheds, construction site high
relegable_southernhairnosedwombat tent high
psychodelic_airedale tent high
ergophilic_fieldspaniel tent high
preexistent_africanmolesnake tent high
wealthy_ocelot tent high
fulltime_mollusk tent high
gentlemanlike_asiaticlesserfreshwaterclam tent high
frowsy_metalmarkbutterfly tent high

Average NA share per company which have atleast one matched ecoinvent product for emission profile

companies_id emission_category_NA
asteria_megalotomusquinquespinosus 0
skarn_gallinule 0
relegable_southernhairnosedwombat 0
psychodelic_airedale 0
ergophilic_fieldspaniel 0
preexistent_africanmolesnake 0
wealthy_ocelot 0
fulltime_mollusk 0
gentlemanlike_asiaticlesserfreshwaterclam 0
frowsy_metalmarkbutterfly 0
cat("Average NA share per company with atleast one matched ecoinvent product for emission profile:", average_na_emission_profile)

Average NA share per company with atleast one matched ecoinvent product for emission profile: 0

Companies with atleast one product with sector category/sector target

companies_id product emission_category
asteria_megalotomusquinquespinosus tent high
skarn_gallinule sheds, construction site high
relegable_southernhairnosedwombat tent high
psychodelic_airedale tent high
ergophilic_fieldspaniel tent high
preexistent_africanmolesnake tent high
wealthy_ocelot tent high
fulltime_mollusk tent high
gentlemanlike_asiaticlesserfreshwaterclam tent high
frowsy_metalmarkbutterfly tent high

Average NA share per company which have atleast one product with sector category

companies_id sector_category_NA
asteria_megalotomusquinquespinosus 0
skarn_gallinule 0
relegable_southernhairnosedwombat 0
psychodelic_airedale 0
ergophilic_fieldspaniel 0
preexistent_africanmolesnake 0
wealthy_ocelot 0
fulltime_mollusk 0
gentlemanlike_asiaticlesserfreshwaterclam 0
frowsy_metalmarkbutterfly 0
cat("Average NA share per company with atleast one product with sector category:", average_na_sector_profile)

Average NA share per company with atleast one product with sector category: 0

Companies with atleast one product with transition risk category

companies_id product transition_risk_category
asteria_megalotomusquinquespinosus tent high
asteria_megalotomusquinquespinosus tent medium
skarn_gallinule sheds, construction site high
skarn_gallinule sheds, construction site medium
relegable_southernhairnosedwombat tent high
relegable_southernhairnosedwombat tent medium
psychodelic_airedale tent high
psychodelic_airedale tent medium
ergophilic_fieldspaniel tent high
ergophilic_fieldspaniel tent medium

Average NA share per company which have atleast one product with transition risk category

companies_id transition_risk_NA_share
asteria_megalotomusquinquespinosus 0
skarn_gallinule 0
relegable_southernhairnosedwombat 0
psychodelic_airedale 0
ergophilic_fieldspaniel 0
preexistent_africanmolesnake 0
wealthy_ocelot 0
fulltime_mollusk 0
gentlemanlike_asiaticlesserfreshwaterclam 0
frowsy_metalmarkbutterfly 0
cat("Average NA share per company with atleast one product with transition risk category:", average_na_transition_risk_profile)

Average NA share per company with atleast one product with transition risk category: 0