Skip to contents

This workflow runs in chunks of the *companies data and caches intermediate results. This saves memory, completes faster, and allows you to resume after interruptions.

Setup

library(dplyr, warn.conflicts = FALSE)
library(readr, warn.conflicts = FALSE)
library(rappdirs)
library(future)
library(fs)

# Masking `tiltIndicatorAfter::profile*()` to use `chunks`
library(tiltWorkflows)
#> Loading required package: tiltIndicatorAfter
#> Loading required package: tiltToyData
#> 
#> Attaching package: 'tiltWorkflows'
#> The following objects are masked from 'package:tiltIndicatorAfter':
#> 
#>     profile_emissions, profile_emissions_upstream, profile_sector,
#>     profile_sector_upstream

If the parameter chunks is NULL (default) your *companies dataset is automatically chunked to distribute its companies across available cores. This uses your computer resources efficiently but may not be enough. Consider adjusting the chunks parameter manually. Aim to balance memory-usage and speed. A small number of chunks makes each chunk bigger and may overwhelm your memory. A large number of chunks may take longer because of the overhead of caching each chunk.

Parameters
params
#> $chunks
#> [1] ""
#> 
#> $order
#> [1] "sample"
#> 
#> $cache_dir
#> [1] ""
#> 
#> $input
#> [1] "input"
#> 
#> $output
#> [1] "output"
#> 
#> $europages_companies
#> [1] "europages_companies.csv"
#> 
#> $ecoinvent_activities
#> [1] "ecoinvent_activities.csv"
#> 
#> $ecoinvent_europages
#> [1] "ecoinvent_europages.csv"
#> 
#> $isic
#> [1] "isic.csv"
#> 
#> $emissions_profile_any_companies
#> [1] "emissions_profile_any_companies.csv"
#> 
#> $emissions_profile_upstream_products
#> [1] "emissions_profile_upstream_products.csv"
#> 
#> $ecoinvent_inputs
#> [1] "ecoinvent_inputs.csv"
options(
  # Determines the number of chunks
  tiltWorkflows.chunks = params$chunks,
  # Determines the order in which the chunks run
  tiltWorkflows.order = params$order,
  # Determines where to store the cache
  tiltWorkflows.cache_dir = params$cache_dir,
  # Read data quietly
  readr.show_col_types = FALSE,
  # Make printed output wider
  width = 500
)

# Enable computing over multiple workers in parallel
plan(multisession)

# Ensure input/ and output/ directories
if (!dir_exists(params$input)) use_toy_input()
#> Writing input/ with toy datasets.
if (!dir_exists(params$output)) dir_create(params$output)
Session information
getwd()
#> [1] "/home/runner/work/tiltWorkflows/tiltWorkflows/vignettes/articles"

availableCores()
#> system 
#>      4

dir_tree(params$input)
#> input
#> ├── ecoinvent_activities.csv
#> ├── ecoinvent_europages.csv
#> ├── ecoinvent_inputs.csv
#> ├── emissions_profile_any_companies.csv
#> ├── emissions_profile_products.csv
#> ├── emissions_profile_upstream_products.csv
#> ├── europages_companies.csv
#> ├── isic.csv
#> ├── sector_profile_any_scenarios.csv
#> ├── sector_profile_companies.csv
#> ├── sector_profile_upstream_companies.csv
#> └── sector_profile_upstream_products.csv

dir_tree(params$output)
#> output

sessioninfo::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#>  setting  value
#>  version  R version 4.4.1 (2024-06-14)
#>  os       Ubuntu 22.04.5 LTS
#>  system   x86_64, linux-gnu
#>  ui       X11
#>  language en
#>  collate  C.UTF-8
#>  ctype    C.UTF-8
#>  tz       UTC
#>  date     2024-10-09
#>  pandoc   3.1.11 @ /opt/hostedtoolcache/pandoc/3.1.11/x64/ (via rmarkdown)
#> 
#> ─ Packages ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
#>  package            * version    date (UTC) lib source
#>  archive              1.1.9      2024-09-12 [1] RSPM
#>  bslib                0.8.0      2024-07-29 [1] RSPM
#>  cachem               1.1.0      2024-05-16 [1] RSPM
#>  cli                  3.6.3      2024-06-21 [1] RSPM
#>  codetools            0.2-20     2024-03-31 [3] CRAN (R 4.4.1)
#>  crayon               1.5.3      2024-06-20 [1] RSPM
#>  dchunkr              0.0.0.9001 2024-10-09 [1] Github (maurolepore/dchunkr@9748350)
#>  desc                 1.4.3      2023-12-10 [1] RSPM
#>  digest               0.6.37     2024-08-19 [1] RSPM
#>  dplyr              * 1.1.4      2023-11-17 [1] RSPM
#>  evaluate             1.0.0      2024-09-17 [1] RSPM
#>  fansi                1.0.6      2023-12-08 [1] RSPM
#>  fastmap              1.2.0      2024-05-15 [1] RSPM
#>  fs                 * 1.6.4      2024-04-25 [1] RSPM
#>  furrr                0.3.1      2022-08-15 [1] RSPM
#>  future             * 1.34.0     2024-07-29 [1] RSPM
#>  generics             0.1.3      2022-07-05 [1] RSPM
#>  globals              0.16.3     2024-03-08 [1] RSPM
#>  glue                 1.8.0      2024-09-30 [1] RSPM
#>  hms                  1.1.3      2023-03-21 [1] RSPM
#>  htmltools            0.5.8.1    2024-04-04 [1] RSPM
#>  htmlwidgets          1.6.4      2023-12-06 [1] RSPM
#>  httpuv               1.6.15     2024-03-26 [1] RSPM
#>  jquerylib            0.1.4      2021-04-26 [1] RSPM
#>  jsonlite             1.8.9      2024-09-20 [1] RSPM
#>  knitr                1.48       2024-07-07 [1] RSPM
#>  later                1.3.2      2023-12-06 [1] RSPM
#>  lifecycle            1.0.4      2023-11-07 [1] RSPM
#>  listenv              0.9.1      2024-01-29 [1] RSPM
#>  magrittr             2.0.3      2022-03-30 [1] RSPM
#>  memoise              2.0.1      2021-11-26 [1] RSPM
#>  mime                 0.12       2021-09-28 [1] RSPM
#>  parallelly           1.38.0     2024-07-27 [1] RSPM
#>  pillar               1.9.0      2023-03-22 [1] RSPM
#>  pkgconfig            2.0.3      2019-09-22 [1] RSPM
#>  pkgdown              2.1.1      2024-09-17 [1] RSPM
#>  promises             1.3.0      2024-04-05 [1] RSPM
#>  purrr                1.0.2      2023-08-10 [1] RSPM
#>  R6                   2.5.1      2021-08-19 [1] RSPM
#>  ragg                 1.3.3      2024-09-11 [1] RSPM
#>  rappdirs           * 0.3.3      2021-01-31 [1] RSPM
#>  Rcpp                 1.0.13     2024-07-17 [1] RSPM
#>  readr              * 2.1.5      2024-01-10 [1] RSPM
#>  rlang                1.1.4      2024-06-04 [1] RSPM
#>  rmarkdown            2.28       2024-08-17 [1] RSPM
#>  sass                 0.4.9      2024-03-15 [1] RSPM
#>  sessioninfo          1.2.2      2021-12-06 [1] RSPM
#>  shiny                1.9.1      2024-08-01 [1] RSPM
#>  stringi              1.8.4      2024-05-06 [1] RSPM
#>  stringr              1.5.1      2023-11-14 [1] RSPM
#>  systemfonts          1.1.0      2024-05-15 [1] RSPM
#>  textshaping          0.4.0      2024-05-24 [1] RSPM
#>  tibble               3.2.1      2023-03-20 [1] RSPM
#>  tidyr                1.3.1      2024-01-24 [1] RSPM
#>  tidyselect           1.2.1      2024-03-11 [1] RSPM
#>  tiltAddCO2           0.0.0.9002 2024-10-09 [1] Github (2DegreesInvesting/tiltAddCO2@dc7eacd)
#>  tiltIndicator        0.0.0.9228 2024-10-09 [1] Github (2DegreesInvesting/tiltIndicator@25abe9a)
#>  tiltIndicatorAfter * 0.0.0.9060 2024-10-09 [1] Github (2DegreesInvesting/tiltIndicatorAfter@e952dae)
#>  tiltPolish           0.0.0.9006 2024-10-09 [1] Github (2degreesinvesting/tiltPolish@d8bdff6)
#>  tiltToyData        * 0.0.0.9204 2024-10-09 [1] Github (2DegreesInvesting/tiltToyData@3a2417a)
#>  tiltTransitionRisk   0.0.0.9003 2024-10-09 [1] Github (2degreesinvesting/tiltTransitionRisk@ee013b8)
#>  tiltWorkflows      * 0.0.0.9033 2024-10-09 [1] local
#>  tzdb                 0.4.0      2023-05-12 [1] RSPM
#>  utf8                 1.2.4      2023-10-22 [1] RSPM
#>  vctrs                0.6.5      2023-12-01 [1] RSPM
#>  withr                3.0.1      2024-07-31 [1] RSPM
#>  xfun                 0.48       2024-10-03 [1] RSPM
#>  xtable               1.8-4      2019-04-21 [1] RSPM
#>  yaml                 2.3.10     2024-07-26 [1] RSPM
#> 
#>  [1] /home/runner/work/_temp/Library
#>  [2] /opt/R/4.4.1/lib/R/site-library
#>  [3] /opt/R/4.4.1/lib/R/library
#> 
#> ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────

Data

This example defaults to using toy datasets but you may use the parameters of this file to instead use your own data.

europages_companies <- read_csv(path(params$input, params$europages_companies))
ecoinvent_activities <- read_csv(path(params$input, params$ecoinvent_activities))
ecoinvent_europages <- read_csv(path(params$input, params$ecoinvent_europages))
isic <- read_csv(path(params$input, params$isic))

The “upstream” workflows also need this dataset.

ecoinvent_inputs <- read_csv(path(params$input, params$ecoinvent_inputs))

Data specific to this indicator.

emissions_profile_any_companies <- read_csv(path(params$input, params$emissions_profile_any_companies))
# FIXME User toy_emissions_profile_upstream_products_ecoinvent()
# See https://github.com/2DegreesInvesting/tiltToyData/pull/12
# https://github.com/2DegreesInvesting/tiltWorkflows/issues/9
emissions_profile_upstream_products <- read_csv(path(params$input, params$emissions_profile_upstream_products))

Emissions profile upstream

For this TILT indicator, compute results both at product and company level.

emissions_profile_upstream <- profile_emissions_upstream(
  companies = emissions_profile_any_companies,
  co2 = emissions_profile_upstream_products,
  europages_companies = europages_companies,
  ecoinvent_activities = ecoinvent_activities,
  ecoinvent_inputs = ecoinvent_inputs,
  ecoinvent_europages = ecoinvent_europages,
  isic = isic
)
#> Warning: Splitting `companies` into 4 chunks.

Results

Overview and save results at each level.

emissions_profile_upstream |>
  unnest_product() |>
  print() |>
  write_csv(path(params$output, "emissions_profile_upstream_at_product_level.csv"))
#> # A tibble: 3,966 × 31
#>    companies_id                       company_name    country emission_upstream_pr…¹ benchmark ep_product matched_activity_name matched_reference_pr…² unit  multi_match matching_certainty matching_certainty_c…³ input_name input_unit input_tilt_sector input_tilt_subsector input_isic_4digit input_isic_4digit_name company_city postcode address main_activity activity_uuid_produc…⁴ profile_ranking ei_input_geography min_headcount max_headcount ei_geography input_activity_uuid_…⁵ co2e_lower co2e_upper
#>    <chr>                              <chr>           <chr>   <chr>                  <chr>     <chr>      <chr>                 <chr>                  <chr> <lgl>       <chr>              <chr>                  <chr>      <chr>      <chr>             <chr>                <chr>             <chr>                  <chr>        <chr>    <chr>   <chr>         <chr>                            <dbl> <chr>                      <dbl>         <dbl> <chr>        <chr>                       <dbl>      <dbl>
#>  1 asteria_megalotomusquinquespinosus asteria_megalo… austria high                   all       tent       market for shed, lar… shed, large, wood, no… m2    FALSE       low                low                    shed, lar… m2         construction      construction reside… '4100'            Construction of build… wilhelmsburg 3150     flesch… wholesaler    76269c17-78d6-420b-99…           0.938 tilt_land                      1            10 tilt_world   44e5e288-4f81-40d0-88…     0.0256 587680710.
#>  2 asteria_megalotomusquinquespinosus asteria_megalo… austria high                   input_is… tent       market for shed, lar… shed, large, wood, no… m2    FALSE       low                low                    shed, lar… m2         construction      construction reside… '4100'            Construction of build… wilhelmsburg 3150     flesch… wholesaler    76269c17-78d6-420b-99…           1     tilt_land                      1            10 tilt_world   44e5e288-4f81-40d0-88…  -206.           867.
#>  3 asteria_megalotomusquinquespinosus asteria_megalo… austria high                   input_ti… tent       market for shed, lar… shed, large, wood, no… m2    FALSE       low                low                    shed, lar… m2         construction      construction reside… '4100'            Construction of build… wilhelmsburg 3150     flesch… wholesaler    76269c17-78d6-420b-99…           1     tilt_land                      1            10 tilt_world   44e5e288-4f81-40d0-88…  -268.           412.
#>  4 asteria_megalotomusquinquespinosus asteria_megalo… austria high                   input_un… tent       market for shed, lar… shed, large, wood, no… m2    FALSE       low                low                    shed, lar… m2         construction      construction reside… '4100'            Construction of build… wilhelmsburg 3150     flesch… wholesaler    76269c17-78d6-420b-99…           1     tilt_land                      1            10 tilt_world   44e5e288-4f81-40d0-88…  -185.           535.
#>  5 asteria_megalotomusquinquespinosus asteria_megalo… austria high                   input_un… tent       market for shed, lar… shed, large, wood, no… m2    FALSE       low                low                    shed, lar… m2         construction      construction reside… '4100'            Construction of build… wilhelmsburg 3150     flesch… wholesaler    76269c17-78d6-420b-99…           1     tilt_land                      1            10 tilt_world   44e5e288-4f81-40d0-88…   220.           880.
#>  6 asteria_megalotomusquinquespinosus asteria_megalo… austria high                   input_un… tent       market for shed, lar… shed, large, wood, no… m2    FALSE       low                low                    shed, lar… m2         construction      construction reside… '4100'            Construction of build… wilhelmsburg 3150     flesch… wholesaler    76269c17-78d6-420b-99…           1     tilt_land                      1            10 tilt_world   44e5e288-4f81-40d0-88…   106.           410.
#>  7 skarn_gallinule                    skarn_gallinule austria high                   all       sheds, co… market for shed, lar… shed, large, wood, no… m2    FALSE       low                low                    shed, lar… m2         construction      construction reside… '4100'            Construction of build… wiener neud… 2355     iz nö-… wholesaler    76269c17-78d6-420b-99…           0.938 tilt_land                      1            10 tilt_world   44e5e288-4f81-40d0-88…     0.0256 587680710.
#>  8 skarn_gallinule                    skarn_gallinule austria high                   input_is… sheds, co… market for shed, lar… shed, large, wood, no… m2    FALSE       low                low                    shed, lar… m2         construction      construction reside… '4100'            Construction of build… wiener neud… 2355     iz nö-… wholesaler    76269c17-78d6-420b-99…           1     tilt_land                      1            10 tilt_world   44e5e288-4f81-40d0-88…  -206.           867.
#>  9 skarn_gallinule                    skarn_gallinule austria high                   input_ti… sheds, co… market for shed, lar… shed, large, wood, no… m2    FALSE       low                low                    shed, lar… m2         construction      construction reside… '4100'            Construction of build… wiener neud… 2355     iz nö-… wholesaler    76269c17-78d6-420b-99…           1     tilt_land                      1            10 tilt_world   44e5e288-4f81-40d0-88…  -268.           412.
#> 10 skarn_gallinule                    skarn_gallinule austria high                   input_un… sheds, co… market for shed, lar… shed, large, wood, no… m2    FALSE       low                low                    shed, lar… m2         construction      construction reside… '4100'            Construction of build… wiener neud… 2355     iz nö-… wholesaler    76269c17-78d6-420b-99…           1     tilt_land                      1            10 tilt_world   44e5e288-4f81-40d0-88…  -185.           535.
#> # ℹ 3,956 more rows
#> # ℹ abbreviated names: ¹​emission_upstream_profile, ²​matched_reference_product, ³​matching_certainty_company_average, ⁴​activity_uuid_product_uuid, ⁵​input_activity_uuid_product_uuid

emissions_profile_upstream |>
  unnest_company() |>
  print() |>
  write_csv(path(params$output, "emissions_profile_upstream_at_company_level.csv"))
#> # A tibble: 1,728 × 13
#>    companies_id                       company_name                       company_city country emission_upstream_profile_share emission_upstream_profile benchmark            matching_certainty_company_average postcode address                                  main_activity profile_ranking_avg co2_avg
#>    <chr>                              <chr>                              <chr>        <chr>                             <dbl> <chr>                     <chr>                <chr>                              <chr>    <chr>                                    <chr>                       <dbl>   <dbl>
#>  1 asteria_megalotomusquinquespinosus asteria_megalotomusquinquespinosus wilhelmsburg austria                               1 high                      all                  low                                3150     fleschplatz 2, top 5 | 3150 wilhelmsburg wholesaler                  0.938    298.
#>  2 asteria_megalotomusquinquespinosus asteria_megalotomusquinquespinosus wilhelmsburg austria                               0 medium                    all                  low                                3150     fleschplatz 2, top 5 | 3150 wilhelmsburg wholesaler                  0.938    298.
#>  3 asteria_megalotomusquinquespinosus asteria_megalotomusquinquespinosus wilhelmsburg austria                               0 low                       all                  low                                3150     fleschplatz 2, top 5 | 3150 wilhelmsburg wholesaler                  0.938    298.
#>  4 asteria_megalotomusquinquespinosus asteria_megalotomusquinquespinosus wilhelmsburg austria                               0 NA                        all                  low                                3150     fleschplatz 2, top 5 | 3150 wilhelmsburg wholesaler                  0.938    298.
#>  5 asteria_megalotomusquinquespinosus asteria_megalotomusquinquespinosus wilhelmsburg austria                               1 high                      input_isic_4digit    low                                3150     fleschplatz 2, top 5 | 3150 wilhelmsburg wholesaler                  1        298.
#>  6 asteria_megalotomusquinquespinosus asteria_megalotomusquinquespinosus wilhelmsburg austria                               0 medium                    input_isic_4digit    low                                3150     fleschplatz 2, top 5 | 3150 wilhelmsburg wholesaler                  1        298.
#>  7 asteria_megalotomusquinquespinosus asteria_megalotomusquinquespinosus wilhelmsburg austria                               0 low                       input_isic_4digit    low                                3150     fleschplatz 2, top 5 | 3150 wilhelmsburg wholesaler                  1        298.
#>  8 asteria_megalotomusquinquespinosus asteria_megalotomusquinquespinosus wilhelmsburg austria                               0 NA                        input_isic_4digit    low                                3150     fleschplatz 2, top 5 | 3150 wilhelmsburg wholesaler                  1        298.
#>  9 asteria_megalotomusquinquespinosus asteria_megalotomusquinquespinosus wilhelmsburg austria                               1 high                      input_tilt_subsector low                                3150     fleschplatz 2, top 5 | 3150 wilhelmsburg wholesaler                  1        298.
#> 10 asteria_megalotomusquinquespinosus asteria_megalotomusquinquespinosus wilhelmsburg austria                               0 medium                    input_tilt_subsector low                                3150     fleschplatz 2, top 5 | 3150 wilhelmsburg wholesaler                  1        298.
#> # ℹ 1,718 more rows

The results at product and company level are now saved in the output/ directory.

# NOTE: If other workflows run before this one, this shows the results of all
params$output |> dir_tree()
#> output
#> ├── emissions_profile_upstream_at_company_level.csv
#> └── emissions_profile_upstream_at_product_level.csv

Cleanup

Here is the cache that allows you to resume after interruptions.

  • The number of files is determined by params$chunks.
# NOTE: If other workflows run before this one, this shows the cache of all
cache_info()
#> # A tibble: 16 × 18
#>    modification_time   path                                                               type         size permissions user   group  device_id hard_links special_device_id  inode block_size blocks flags generation access_time         change_time         birth_time         
#>    <dttm>              <fs::path>                                                         <fct> <fs::bytes> <fs::perms> <chr>  <chr>      <dbl>      <dbl>             <dbl>  <dbl>      <dbl>  <dbl> <int>      <dbl> <dttm>              <dttm>              <dttm>             
#>  1 2024-10-09 11:00:07 /home/runner/.cache/tiltWorkflows/profile_emissions/1.rds          file       186.1K rw-r--r--   runner docker      2049          1                 0 547925       4096    376     0          0 2024-10-09 11:00:08 2024-10-09 11:00:07 2024-10-09 11:00:07
#>  2 2024-10-09 11:00:07 /home/runner/.cache/tiltWorkflows/profile_emissions/2.rds          file       185.5K rw-r--r--   runner docker      2049          1                 0 547926       4096    376     0          0 2024-10-09 11:00:08 2024-10-09 11:00:07 2024-10-09 11:00:07
#>  3 2024-10-09 11:00:08 /home/runner/.cache/tiltWorkflows/profile_emissions/3.rds          file       190.7K rw-r--r--   runner docker      2049          1                 0 547927       4096    384     0          0 2024-10-09 11:00:08 2024-10-09 11:00:08 2024-10-09 11:00:08
#>  4 2024-10-09 11:00:08 /home/runner/.cache/tiltWorkflows/profile_emissions/4.rds          file         191K rw-r--r--   runner docker      2049          1                 0 547928       4096    384     0          0 2024-10-09 11:00:08 2024-10-09 11:00:08 2024-10-09 11:00:08
#>  5 2024-10-09 11:00:09 /home/runner/.cache/tiltWorkflows/profile_emissions_upstream/1.rds file       911.9K rw-r--r--   runner docker      2049          1                 0 547930       4096   1824     0          0 2024-10-09 11:00:10 2024-10-09 11:00:09 2024-10-09 11:00:09
#>  6 2024-10-09 11:00:09 /home/runner/.cache/tiltWorkflows/profile_emissions_upstream/2.rds file       190.9K rw-r--r--   runner docker      2049          1                 0 547931       4096    384     0          0 2024-10-09 11:00:10 2024-10-09 11:00:09 2024-10-09 11:00:09
#>  7 2024-10-09 11:00:10 /home/runner/.cache/tiltWorkflows/profile_emissions_upstream/3.rds file       922.8K rw-r--r--   runner docker      2049          1                 0 547932       4096   1848     0          0 2024-10-09 11:00:10 2024-10-09 11:00:10 2024-10-09 11:00:10
#>  8 2024-10-09 11:00:10 /home/runner/.cache/tiltWorkflows/profile_emissions_upstream/4.rds file       921.3K rw-r--r--   runner docker      2049          1                 0 547933       4096   1848     0          0 2024-10-09 11:00:10 2024-10-09 11:00:10 2024-10-09 11:00:10
#>  9 2024-10-09 11:00:13 /home/runner/.cache/tiltWorkflows/profile_sector/1.rds             file        91.6K rw-r--r--   runner docker      2049          1                 0 547946       4096    184     0          0 2024-10-09 11:00:14 2024-10-09 11:00:13 2024-10-09 11:00:13
#> 10 2024-10-09 11:00:14 /home/runner/.cache/tiltWorkflows/profile_sector/2.rds             file        88.4K rw-r--r--   runner docker      2049          1                 0 547947       4096    184     0          0 2024-10-09 11:00:14 2024-10-09 11:00:14 2024-10-09 11:00:14
#> 11 2024-10-09 11:00:14 /home/runner/.cache/tiltWorkflows/profile_sector/3.rds             file        89.8K rw-r--r--   runner docker      2049          1                 0 547948       4096    184     0          0 2024-10-09 11:00:14 2024-10-09 11:00:14 2024-10-09 11:00:14
#> 12 2024-10-09 11:00:14 /home/runner/.cache/tiltWorkflows/profile_sector/4.rds             file        87.9K rw-r--r--   runner docker      2049          1                 0 547949       4096    176     0          0 2024-10-09 11:00:14 2024-10-09 11:00:14 2024-10-09 11:00:14
#> 13 2024-10-09 11:00:15 /home/runner/.cache/tiltWorkflows/profile_sector_upstream/1.rds    file       100.5K rw-r--r--   runner docker      2049          1                 0 547951       4096    208     0          0 2024-10-09 11:00:15 2024-10-09 11:00:15 2024-10-09 11:00:15
#> 14 2024-10-09 11:00:15 /home/runner/.cache/tiltWorkflows/profile_sector_upstream/2.rds    file       119.8K rw-r--r--   runner docker      2049          1                 0 547952       4096    240     0          0 2024-10-09 11:00:15 2024-10-09 11:00:15 2024-10-09 11:00:15
#> 15 2024-10-09 11:00:15 /home/runner/.cache/tiltWorkflows/profile_sector_upstream/3.rds    file       101.2K rw-r--r--   runner docker      2049          1                 0 547953       4096    208     0          0 2024-10-09 11:00:15 2024-10-09 11:00:15 2024-10-09 11:00:15
#> 16 2024-10-09 11:00:15 /home/runner/.cache/tiltWorkflows/profile_sector_upstream/4.rds    file       135.9K rw-r--r--   runner docker      2049          1                 0 547954       4096    272     0          0 2024-10-09 11:00:15 2024-10-09 11:00:15 2024-10-09 11:00:15

If you want to recompute some result, you must first delete the relevant cache:

library(fs)
library(rappdirs)

dir_delete(user_cache_dir("tiltWorkflows/PROFILE-DIRECTORY-YOU-WANT-TO-DELETE"))

# DANGER: Or delete the entire default cache directory with
cache_delete()