Calculate the indicator "transition risk profile"
Source:R/transition_risk_profile.R
transition_risk_profile.Rd
Adds the risk classification to calculated transition risk scores from emission profile and sector profile indicator.
Usage
transition_risk_profile(
emissions_profile,
sector_profile,
co2,
all_activities_scenario_sectors,
scenarios,
for_webtool = FALSE
)
Arguments
- emissions_profile
Nested data frame. The output of
profile_emissions()
.- sector_profile
Nested data frame. The output of
profile_sector()
.- co2
A dataframe
- all_activities_scenario_sectors
A dataframe
- scenarios
A dataframe
- for_webtool
Logical. Is it output for webtool or not?
Value
A data frame with the column companies_id
, and the nested
columnsproduct
and company
holding the outputs at product and company
level.
See also
Other top-level functions:
score_transition_risk()
Examples
library(readr, warn.conflicts = FALSE)
library(dplyr, warn.conflicts = FALSE)
library(tiltToyData, warn.conflicts = FALSE)
library(tiltIndicator)
library(tiltIndicatorAfter)
set.seed(123)
restore <- options(list(
readr.show_col_types = FALSE,
tiltIndicatorAfter.output_co2_footprint = TRUE
))
toy_emissions_profile_products_ecoinvent <- read_csv(toy_emissions_profile_products_ecoinvent())
toy_emissions_profile_any_companies <- read_csv(toy_emissions_profile_any_companies())
toy_sector_profile_any_scenarios <- read_csv(toy_sector_profile_any_scenarios())
toy_sector_profile_companies <- read_csv(toy_sector_profile_companies())
toy_europages_companies <- read_csv(toy_europages_companies())
toy_ecoinvent_activities <- read_csv(toy_ecoinvent_activities())
toy_ecoinvent_europages <- read_csv(toy_ecoinvent_europages())
toy_ecoinvent_inputs <- read_csv(toy_ecoinvent_inputs())
toy_isic_name <- read_csv(toy_isic_name())
toy_all_activities_scenario_sectors <- read_csv(toy_all_activities_scenario_sectors())
toy_emissions_profile <- profile_emissions(
companies = toy_emissions_profile_any_companies,
co2 = toy_emissions_profile_products_ecoinvent,
europages_companies = toy_europages_companies,
ecoinvent_activities = toy_ecoinvent_activities,
ecoinvent_europages = toy_ecoinvent_europages,
isic = toy_isic_name
)
toy_sector_profile <- profile_sector(
companies = toy_sector_profile_companies,
scenarios = toy_sector_profile_any_scenarios,
europages_companies = toy_europages_companies,
ecoinvent_activities = toy_ecoinvent_activities,
ecoinvent_europages = toy_ecoinvent_europages,
isic = toy_isic_name
)
output <- transition_risk_profile(
emissions_profile = toy_emissions_profile,
sector_profile = toy_sector_profile,
co2 = toy_emissions_profile_products_ecoinvent,
all_activities_scenario_sectors = toy_all_activities_scenario_sectors,
scenarios = toy_sector_profile_any_scenarios,
for_webtool = FALSE
)
output |> unnest_product()
#> # A tibble: 1,824 × 45
#> companies_id company_name country postcode address main_activity product
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 asteria_megaloto… asteria_meg… austria 3150 flesch… wholesaler tent
#> 2 asteria_megaloto… asteria_meg… austria 3150 flesch… wholesaler tent
#> 3 asteria_megaloto… asteria_meg… austria 3150 flesch… wholesaler tent
#> 4 asteria_megaloto… asteria_meg… austria 3150 flesch… wholesaler tent
#> 5 asteria_megaloto… asteria_meg… austria 3150 flesch… wholesaler tent
#> 6 asteria_megaloto… asteria_meg… austria 3150 flesch… wholesaler tent
#> 7 asteria_megaloto… asteria_meg… austria 3150 flesch… wholesaler tent
#> 8 asteria_megaloto… asteria_meg… austria 3150 flesch… wholesaler tent
#> 9 asteria_megaloto… asteria_meg… austria 3150 flesch… wholesaler tent
#> 10 asteria_megaloto… asteria_meg… austria 3150 flesch… wholesaler tent
#> # ℹ 1,814 more rows
#> # ℹ 38 more variables: matched_activity_name <chr>,
#> # matched_reference_product <chr>, matching_certainty <chr>,
#> # co2_footprint <dbl>, unit <chr>, isic_4digit <chr>, tilt_sector <chr>,
#> # tilt_subsector <chr>, grouping_emission <chr>, co2e_lower <dbl>,
#> # co2e_upper <dbl>, emission_rank <dbl>, emission_category <chr>,
#> # emissions_profile_equal_weight <dbl>, emissions_profile_best_case <dbl>, …
output |> unnest_company()
#> # A tibble: 1,728 × 38
#> companies_id company_name country co2e_avg grouping_emission
#> <chr> <chr> <chr> <dbl> <chr>
#> 1 asteria_megalotomusquinquesp… asteria_meg… austria 303. all
#> 2 asteria_megalotomusquinquesp… asteria_meg… austria 303. all
#> 3 asteria_megalotomusquinquesp… asteria_meg… austria 303. all
#> 4 asteria_megalotomusquinquesp… asteria_meg… austria 303. all
#> 5 asteria_megalotomusquinquesp… asteria_meg… austria 303. isic_4digit
#> 6 asteria_megalotomusquinquesp… asteria_meg… austria 303. isic_4digit
#> 7 asteria_megalotomusquinquesp… asteria_meg… austria 303. isic_4digit
#> 8 asteria_megalotomusquinquesp… asteria_meg… austria 303. isic_4digit
#> 9 asteria_megalotomusquinquesp… asteria_meg… austria 303. tilt_subsector
#> 10 asteria_megalotomusquinquesp… asteria_meg… austria 303. tilt_subsector
#> # ℹ 1,718 more rows
#> # ℹ 33 more variables: emission_rank_avg_equal_weight <dbl>,
#> # emission_rank_avg_best_case <dbl>, emission_rank_avg_worst_case <dbl>,
#> # emission_category_low <dbl>, emission_category_medium <dbl>,
#> # emission_category_high <dbl>, emission_category_NA <dbl>, scenario <chr>,
#> # year <dbl>, sector_target_avg_equal_weight <dbl>,
#> # sector_target_avg_best_case <dbl>, sector_target_avg_worst_case <dbl>, …